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ABSTRACT
We discuss parallel performance of structured adaptive mesh
refinement calculations using the SAMRAI library. We focus
on fundamental aspects of adaptive gridding and dynamic
computation of changing data dependencies. Previous anal-
ysis of performance of large-scale parallel adaptive calcula-
tions revealed poor scaling in these operations. Specifically,
we found that these operations are inexpensive for small
problems, but that their costs can become unacceptable for
problems run on large numbers of processors. This paper de-
scribes subsequent developments involving graph- and tree-
based algorithms that reduce runtime complexity and sub-
stantially increase scalability. We characterize performance
on realistic adaptive problems using up to 512 processors of
an IBM SP system and up to 1024 processors of a Linux
cluster.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis, Efficiency, Parallel and vector implementations; I.6
[Simulation and Modeling]: General; J.2 [Physical Sci-
ences and Engineering]: Engineering, Mathematics and
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1. INTRODUCTION
In many important science and engineering simulation

problems, key solution features occur only in localized re-
gions of the computational domain. Adaptive mesh refine-
ment (AMR) is an important tool for dynamically increas-
ing spatial and temporal grid resolution where it is needed
most to resolve local features. By focusing memory usage
and computational effort, a highly resolved solution may be
achieved more efficiently than if the grid is refined globally.

Structured adaptive mesh refinement (SAMR) is a par-
ticular adaptive gridding methodology in which a dynamic,
locally-refined grid is implemented using structured grid con-
cepts. Like other AMR approaches, SAMR presents com-
plications for parallel computing that are absent in uniform
grid calculations. Specifically, the need to move data on an
irregular locally-refined grid configuration presents complex
data communication patterns. Moreover, since the grid may
be adapted frequently, the cost of computing grid-dependent
data exchange information cannot be amortized over an en-
tire calculation.

Our work uses the SAMRAI framework [19], an object-
oriented software library we have developed at Lawrence
Livermore National Laboratory. SAMRAI provides robust
parallel adaptive gridding and data management capabilities
as well as a flexible algorithm support framework that sim-
plifies the development of sophisticated multi-physics SAMR
applications. A full description SAMRAI and SAMR algo-
rithms is beyond the scope of this paper. Our focus here is
on the parallel performance of critical operations in large-
scale adaptive computations. We describe operations that
potentially become inefficient when problem size increases
and execution requires a large number of processors. We
also introduce algorithm enhancements that can substan-
tially alleviate these performance problems.

We present results for relatively simple problems that al-
low us to control and analyze key adaptive aspects of the
calculations. However, these problems use algorithms sim-
ilar to those found in more complex multi-physics applica-
tions [19]. While our findings are the result of codes that
use SAMRAI, the main performance issues and algorithm
solutions we propose are applicable to other SAMR efforts.

The paper begins with a description of the salient features
of SAMR grid structures, grid adaptivity, and manipulation
of data during an adaptive computation. Then, we discuss
benchmark problems that we use to compare performance
of our earlier code implementation to new algorithm devel-



Figure 1: A simple two-level SAMR grid hierarchy,
with a refinement ratio of (2,2).

opments. Next, we summarize parallel scaling problems ob-
served in previous work and provide a detailed discussion of
algorithmic changes to resolve these problems. Finally, we
present parallel performance results to demonstrate perfor-
mance improvements that the new algorithms provide.

2. SAMR OVERVIEW
Structured adaptive mesh refinement (SAMR) is a tech-

nique for increasing local spatial and temporal resolution in
numerical simulations of scientific and engineering problems.
SAMR was originally developed to achieve higher resolution
shock calculations [5, 6]. Subsequent developments have ex-
panded the SAMR algorithm space and the range of prob-
lems to which SAMR is applied, including incompressible
flow [1, 21]; ALE hydrodynamics [2]; particle-continuum
hybrids [17, 27]; flow in porous media [20]; solid mechan-
ics [16, 26]; magnetohydrodynamics [4, 12, 15]; laser-plasma
instabilities [13]; and astrophysics [8, 9].

2.1 The SAMR Grid Hierarchy
In the SAMR paradigm, a computational grid is imple-

mented using structured grid components. The grid is a
hierarchy of levels of spatial (and often temporal) resolu-
tion where all grid cells on a level have the same grid spac-
ing. Also, levels are nested; that is, the coarsest level cov-
ers the entire computational domain and each successively
finer level covers a portion of the interior of the next coarser
level. Computational cells on each level are grouped into
non-overlapping, logically-rectangular “box” regions called
patches (see Fig. 1). Usually, simulation data are stored on
patches in contiguous arrays that map directly to the grid
cells without indirection. In SAMR parlance, the term box,
which refers to a logically-rectangular region of grid index
space, is ubiquitous. Each patch is defined by its bounding
box and numerical routines and data communication are op-
erations on patch data in box regions.

During initial construction and adaptive gridding of an
SAMR grid hierarchy, levels are generated one at a time.
The coarsest hierarchy level defines the physical extent of
the computational domain. Each finer level is constructed
by selecting cells on the next coarser level that require re-
finement based on some problem-based criteria. Then, the
cells are clustered into boxes to form patches for the finer
level as shown in Figure 2. The grid spacing on each finer
level is given by a refinement ratio that indicates the num-

Figure 2: Cross-section of an adaptive grid hierarchy
with finer levels covering a discontinuity in the so-
lution. Boxes indicate patch boundaries on the fine
level. Note that many fine patches may be needed
to resolve features that are not aligned with grid
coordinate directions.

ber of fine grid increments in each coordinate direction into
which each coarse cell is divided. An important consequence
of this organization is that fine patch boundaries align with
coarse cell boundaries. This property facilitates data com-
munication between levels and also the implementation of
numerical methods on the grid hierarchy.

2.2 SAMR Algorithms
In this section, we describe common SAMR operations

emphasizing those that are central to adaptive gridding; this
will fix ideas for more detailed algorithm discussion that
follows. SAMR applications can be decomposed into nu-
merical integration operations and gridding operations. In
particular, serial numerical routines operate on data living
on patches and communication operations pass information
between patches, for example, to fill ghost cells. SAMR com-
putations are more complicated than those using static uni-
form grids since the SAMR grid changes dynamically. Also,
solution procedures must account for varying levels of grid
resolution by identifying cells to refine and properly treat-
ing boundaries between grid levels to generate a consistent
solution.

We are interested in solving time-dependent partial differ-
ential equations (PDEs). In this case, SAMR time integra-
tion usually involves interleaving time steps on individual
hierarchy levels [5, 19, 26]. When integrating a single level,
serial numerical methods operate on patches to advance the
solution of the PDE. Data is moved to patch ghost cells from
nearby patch interiors before the numerical operations oc-
cur. Each ghost cell value comes from one of three sources:
a value copied from a neighboring patch on the same grid
level, interpolation of data from coarser or finer levels, or a
physical boundary condition. Since patch configurations are
dynamic, data source and destination information must be
recomputed whenever the grid changes.

Levels change at certain points during the time integration
sequence and each regrid phase may involve one or multiple
levels. Level regridding involves four major steps: choosing
cells on the next coarser level that require refinement (i.e.,
cell-tagging), constructing new patch regions, moving data
from the old patch configuration to the new configuration,



and generating new data dependency information required
to continue integration of the PDEs. Cell tagging is a serial
operation and is entirely dependent on the problem being
solved and so will not be discussed further here. Our focus
in this paper is the construction of new grid patches and the
computation of data transfer information.

In SAMRAI, the construction of patches from tagged cells
involves several steps. First, tagged cells are covered by a
set of boxes using the point clustering algorithm of Berger
and Rigoutsos [7], which is common in the SAMR commu-
nity. Second, these boxes are grown or shrunk to simplify
setting physical boundary values in user code and to en-
sure properties like nesting of the level within the interior of
the next coarser level. Third, the resulting boxes are load
balanced and assigned to processors. This involves cutting
boxes into smaller boxes until the estimated computational
work on each resulting patch is equal to or less than an
average per-processor workload. To increase the likelihood
that neighboring patches will reside on the same processor,
the boxes are then ordered according to their spatial loca-
tion by placing a Morton space filling curve through the box
centroids [18]. Finally, boxes are mapped to processors using
a greedy bin-packing procedure.

Each processor constructs the patches and associated data
for the boxes assigned to it. Note that we assign each patch
and its data to one processor, rather than partitioning the
data on a patch and distributing it to multiple processors.
After making new patches, information describing the trans-
fer of data to and from each patch in the hierarchy affected
by the new level configuration must be regenerated. This
requires the creation of a new communication schedule for
each data communication phase that depends on the level.

A communication schedule maintains a list of data trans-
actions between patches on the SAMR grid hierarchy. For
example, setting ghost cell values for a patch level may re-
quire data interpolated from coarser levels or data copied
from neighboring patches on the same level. Based on the
hierarchy patch configuration and the data quantities and
operations (e.g., interpolation) involved, the communica-
tion schedule creates and stores transactions describing the
movement of data to and from each patch local to its proces-
sor. Each transaction contains the data destination region,
the source patch that will supply this data, and any other
necessary operator information. When a schedule is exe-
cuted, each transaction performs either a local data copy or
an interprocessor communication. For data movement be-
tween processors, a schedule assembles buffers that are ex-
changed via asynchronous MPI message passing calls. The
buffers are formed to maintain a single buffer send and re-
ceive between each processor pair regardless of the number
of patches or number of data quantities involved. The par-
allel data decomposition in SAMRAI is similar to that used
in other SAMR support libraries. SAMRAI communication
schedules are generalizations and extensions of ideas found
in the KeLP library [3, 14]. SAMRAI communication sched-
ules in are described in more detail elsewhere [19, 28].

This overview of primary adaptive and data communica-
tion operations performed in SAMR calculations serves as
background to the results that follow. Next, we concentrate
on performance of dynamic patch and schedule construction
operations that are crucial to achieve scalable adaptive ap-
plications. We will provide additional details for the Berger-
Rigoutsos and schedule construction algorithms as needed to

describe our recent algorithmic developments.

3. PARALLEL BENCHMARK PROBLEMS
In this section, we describe two problems that we use to

evaluate parallel performance and compare changes to SAM-
RAI code implementation. Both problems employ a stan-
dard SAMR explicit time-stepping algorithm [5], involving
spatial and temporal grid refinement. Adaptive gridding
occurs every other time step on each hierarchy level. Each
problem was chosen to emphasize a different notion of paral-
lel scaling. The first problem uses the same problem size on
all processor partitions, which allows us to investigate per-
formance when more processors are applied to a fixed size
problem. The size of the second problem is scaled propor-
tionately with number of processors, thus revealing trends
that appear as problem size is increased commensurate with
the number of processors.

3.1 Non-scaled Problem
The first problem models a Sedov [25] spherical blast wave

using the Euler equations of compressible gas dynamics. The
solution is represented by five grid variables and is solved us-
ing a second-order Godunov shock capturing scheme [10, 11,
22]. The initial condition is a spherical pressure discontinu-
ity of radius δr (we use δr = 0.04375) at the center of the
domain in an otherwise homogeneous medium. The domain
is a 1.0 x 1.0 x 1.0 cube on which we apply a Cartesian grid
domain with four grid levels with a refinement factor of 4
between successive levels; see Figure 3. Figure 4 shows the
number of computational cells on each level as a function
of simulation time. Note that the total problem size grows
roughly linearly as the simulation advances, which is due
to adaptivity of the finest grid to resolve the spherically-
expanding shock.

For this problem, the same domain size and SAMR hi-
erarchy level configuration was used on all processor parti-
tions. In the performance results section, we examine the
relative costs of time integration and adaptive gridding op-
erations. Gridding operations include cell tagging, patch
level construction (including Berger-Rigoutsos point cluster-
ing), data redistribution, and generation of communication
schedules. The simulation is run to a time of 0.0035, which
is about 13 coarse grid time steps. Each hierarchy level is
regridded every two time advance steps.

3.2 Scaled Problem
The second problem models a sinusoidal-shaped advect-

ing front using the scalar linear advection equation. The
solution state is a single scalar grid variable and we solve
the problem using the same integration methods as in the
first problem. The problem domain is of size 2.0 x 1.0 x 1.0
with three grid levels, where the mesh is refined by a factor
of four between levels; see Figure 5.

For this problem, we control the gridding process to in-
crease the problem size proportionately with the number of
processors. That is, we manually scale the grid system from
a reference grid configuration to increase the number of grid
cells by a specified amount. First, we run a problem on
P processors and, after each gridding step, store the boxes
that define the grid in a file. Then, when we run on more
processors, we read the boxes from the file and refine each
box by a factor proportional to the increase in number of
processors. For example, to go from P to 2P processors, we



Figure 3: Pressure contours of Sedov spherical shock
problem. The adaptive grid system uses four levels.
Patch boxes on the finest two levels are shown.

Figure 4: The number of grid cells grows during the
simulation as the shock front expands. Note that
most cells are on the finest level. Thus, the bulk of
computational effort is used to resolve the shock.

double the number of cells in one coordinate direction.
The linear advection problem is very simple numerically,

yet produces complex adaptive grid configurations due to
the sinusoidal front. Thus, computing communication sched-
ules is non-trivial. Since the problem is linear, we force the
same time-stepping sequence on all grid configurations to
insure that the same number of integration and communi-
cation procedures are performed in each case. Because the
amount of numerical work is very small, data communica-
tion and adaptive gridding operations are relatively much
more expensive in this case than in the Euler case. There-
fore, this problem emphasizes adaptive gridding costs and
is a good benchmark to assess scalability in the adaptive
gridding operations. As a consequence of the way we con-
struct the grids for this case, Berger-Rigoutsos point clus-
tering is not needed. Thus, the adaptive gridding opera-
tions counted in the performance results section include only
patch level construction (from pre-defined boxes) and gen-
eration of communication schedules. The simulation is run
to a time of 0.6, which is about 25 coarse grid time steps.
Like the non-scaled case, each hierarchy level is regridded

Figure 5: Scaled advecting sinusoidal front problem
- density contours overlaid on adaptive grid.

every two time advance steps.

4. ADAPTIVE SCALING PROBLEMS
As discussed in Section 2, the two main phases of SAMR

calculations that we consider are adaptive gridding and time
integration. Previously, we reported [28] poor parallel scal-
ing in the adaptive gridding parts of benchmark problems
described in Section 3. The primary sources of inefficiency
were our parallel implementation of the Berger-Rigoutsos
point clustering algorithm and the generation of communi-
cation schedules. We observed that the total parallel pro-
cessing time of these operations actually increased as the
number of processors increased. Incidentally, one may think
that data redistribution, whereby data is migrated from the
old grid configuration to the new configuration, is a primary
contributor to parallel inefficiency. However, the data com-
munication support in SAMRAI is very fast, and we found
that data redistribution required less than 1% of total exe-
cution time and scaled well on the problems we tested.

In our original analysis, we found that communication
schedule construction was the first major scaling problem.
Schedule construction cost grew roughly as the square of
the number of patches in the problem. As a result, the
time needed for these operations rapidly became a dominant
cost when calculations involved many patches, which occurs
when running larger problems on many processors. The sec-
ond major scaling problem involved the Berger-Rigoutsos
algorithm. In our initial parallel implementation, parallel
array all-reduce operations were used over the irregular grid
structure to build global tag histogram arrays on each pro-
cessor at each step of the calculation. Each processor then
performed identical operations to construct box regions that
covered the tagged cells on the grid. The cost of the algo-
rithm was negligible on small numbers of processors where
the cost of global all-reduce operations was barely notice-
able. However, as the number of processors was increased
this implementation of Berger-Rigoutsos faced two scaling
problems. First, as the problem size was increased, the num-
ber of global all-reduce operations increased proportionally.



Second, on a greater number of processors, the cost of each
all-reduce operation also increased. More details on these is-
sues as well as our solutions to these problems are discussed
in later sections.

5. MODIFIED ALGORITHMS
In this section, we discuss changes to communication sched-

ule construction and Berger-Rigoutsos point clustering op-
erations in SAMRAI to alleviate performance problems de-
scribed above. We consider these procedures computational
overhead since they are needed for adaptive gridding but
they are not directly part of the numerical solution pro-
cess. Thus, our goal is to make them as efficient as we can,
especially as we scale problem sizes up and run on many
processors. In earlier analysis, we observed that our imple-
mentation became more costly as more patches were applied
to the problem. Thus, we explored ways to generate fewer
large patches rather than many smaller patches. However,
we found that we can achieve better load balance when using
many smaller patches since this allows finer grained con-
trol over the distribution of work across processors. Con-
sequently, we chose to develop new approaches that scale
well to large numbers of boxes to allow more load balancing
flexibility without incurring unacceptable adaptive gridding
overhead.

5.1 Communication Schedules
Our original communication schedule construction proce-

dures involved excessive comparisons of patch box regions.
The box intersection information needed to characterize the
transfer of data between patches was generated using an
O(N2) algorithm, where N is the number of patches in-
volved. This approach compares each box on a destination
level with every box on potential source levels. Our previous
results showed that this does not require excessive execution
time when N is sufficiently small. However, N tends to grow
both with problem size and number of processors. When N
becomes large enough, the schedule construction process be-
gins to dominate total execution time due to the quadratic
nature of the algorithm.

We explored three improved box intersection algorithms
in our work. Each algorithm requires a setup phase, during
which data structures based on spatial relationships between
boxes are constructed. The setup is a one-time cost, (typi-
cally O(N log N)), that can be amortized over many calls to
compute box intersections depending on how the adaptive
grid changes. For the sake of brevity, we discuss only our
best performing algorithm here, which uses a data structure
that we call a Recursive Binary Box Tree (RBBT).

The box intersection operations used in SAMR are simi-
lar to operations studied in other fields, e.g., computational
geometry. We refer readers to Samet [23, 24], for general
information and additional references. Although our RBBT
structure is similar to other hierarchical data structures,
such as octrees, k-d trees, etc, we believe it is novel in that it
can be used to determine spatial relationships among boxes
in an arbitrary number of spatial dimensions or other geo-
metric shapes.

5.1.1 RBBT algorithms
A Recursive Binary Box Tree (RBBT) is a data structure

that enables the efficient (typically O(N log N)) computa-
tion of spatial relationships. The exact nature of an RBBT

is best explained by examining the ConstructBoxTree al-
gorithm, which is invoked during the setup phase.

The root node of a binary tree is passed a set of boxes, for
which a bounding box is computed. In 3D, the bounding box
is then conceptually divided into two halves by constructing
a bisecting plane that is parallel to the z-axis. The list of
boxes is then partitioned into three subsets. The first subset
contains the boxes that intersect the bisecting plane; this
subset of boxes is assigned to the root node. The second
subset contains the boxes that are entirely enclosed in one
half of the bounding box; this subset of boxes is passed (in a
recursive call) to the constructor for the left child node. The
third subset contains boxes enclosed by the remaining half,
and is passed to the constructor for the right child node.
The tree that results from this process is called the primary
tree.

Next, each node in the primary tree constructs a private,
secondary binary tree. The constructor for the root node
of the secondary tree is passed the set of boxes that was
assigned to the node in the primary tree. The secondary
tree’s construction is identical to the primary tree, with the
exception that the bounding box is divided by a plane that is
parallel to the y-axis. In a similar manner, each node in the
secondary tree constructs a tertiary tree, in which bounding
boxes are divided by planes that are parallel to the x-axis.

ConstructBoxTree(boxlist B, dimension d)
1. # Construct bounding box.
2. Compute the bounding box for B.
3. Divide the bounding box into 2 quadrants; j = 1 or 2.
4. If d = 1, divide the box in a direction orthogonal

to the x-axis
5. If d = 2, divide the box in a direction orthogonal

to the y-axis
6. If d = 3, divide the box in a direction orthogonal

to the z-axis
7. # Partition boxlist B.
8. For each box b ∈ B
9. If b is enclosed by quadrant j
10. Insert b in boxlistj

11. Else
12. Insert b in this node’s boxlist
13. # Recursively construct child nodes.
14. For j = 1 to 2
15. If boxlistj is empty
16. Set childj to null
17. Else
18. childj = ConstructBoxTree(boxlistj , d)
19. # Construct private BoxTree.
20. If this node’s boxlist contains more than one box, and d > 1
21. private tree = ConstructBoxTree(boxlist, d − 1)
22. Set boxlist to null
23. Else
24. Set private tree to null

The RBBT can be “tuned” to reduce memory require-
ments and improve performance (i.e. reduce execution time)
through the use of constraints that, for clarity, we have omit-
ted from the above. One constraint is: if the boxlist that is
passed to a node contains less than some specified number
of boxes n, assign all the boxes to the node and return im-
mediately (i.e., do not recurse to build child nodes and/or
private trees). If n is relatively large, nodes will have larger



Figure 6: Potential box cut locations at inflection
points in histogram data used in the BR algorithm.
Dark circles indicate tagged cells. Σ is the histogram
value indicating the number of tags in the perpen-
dicular direction, and ∆ is the discrete Laplacian.
Potential inflection cut points occur along each di-
rection at the largest sign change in ∆ (dotted lines).

numbers of boxes in their boxlists (after partitioning), and
the tree will have fewer nodes. If n = 1, a node’s boxlist will
contain at most a single box, and the number of nodes in the
tree will be maximized. In our experience, best performance
was obtained with values around n = 10.

In general, the performance of binary tree based algo-
rithms is known to degrade when the trees are unbalanced.
With regard to RBBTs, performance can be shown to de-
grade if, at the conclusion of Step 12, the number of boxes
in the three subsets is relatively unequal. In the worst case,
one of the child subsets could be empty, which would re-
sult in an unbalanced tree. This issue can be addressed by
incorporating a strategy whereby the “bisecting plane” is
adjusted to achieve better balance during partitioning. Sev-
eral strategies are possible here, but for the sake of brevity
will not be discussed further.

The RBBT is used to perform a box intersection operation
by “walking the tree” in a recursive manner. The FindIn-
tersectingBoxes algorithm is based on the following nec-
essary condition: a box b can intersect a box contained in
the subtree that is rooted at a node only if b intersects the
node’s bounding box.

The BoxIntersection algorithm operates as follows. Given
an arbitrary box of interest b, we want to find the subset
of boxes from an RBBT that intersect with b. Beginning
at the RBBT’s root node, b is compared with the node’s
bounding box. If the two do not intersect, the call returns.
If they do intersect, then b is compared to each box in the
node’s boxlist, and any boxes that intersect b are added
to the output. Next, b is passed recursively to the left and
right child nodes, and to the root node of the private RBBT.

5.1.2 Comparison and analysis
For simple configurations of boxes, e.g, a set of identically

sized, regularly tiled boxes in an N1/3×N1/3×N1/3 configu-
ration, it is easy to show that RBBT construction is bounded
by O(N log N), and that a single box intersection operation
is bounded by O(log N). Analytic bounds for arbitrary col-
lections of boxes have so far eluded us, however, we conjec-
ture that, with some variation on the tree-balancing strat-
egy discussed above, and the constraint (which is common
in SAMR technologies) that the set of boxes from which the
RBBT was constructed are non overlapping, these bounds
can be shown to hold.

5.2 Berger-Rigoutsos Algorithm
One of the key procedures that we use to generate a new

patch level from tagged cells is the point clustering algorithm
of Berger and Rigoutsos (BR) [7]. This algorithm groups
tagged cells into an initial collection of logically-rectangular
box regions from which patches will be created. This algo-
rithm is commonly used in the SAMR community. Here,
we provide a simplified description of our implementation
written as a recursive procedure:

BR Cluster( box boxin, boxlist boxesout )
1. Compute tag histogram for each dimension of boxin.
2. Set ntags = number of tagged cells in boxin.
3. If ntags > 0
4. Set bboxtag = smallest bounding box for boxin tags
5. If ntags/ (num cells in bboxtag) < toleff

6. Loop over sides of bboxtag, long to short
8. If ∃ zero histogram value near middle of side
9. Set xcut = assoc. cell index, exit loop
10. Elseif ∃ inflection point in histogram
11. Set xcut = assoc. cell index, exit loop
12. If xcut set
13. Cut bboxtag into boxleft, boxright at xcut

14. BR Cluster( boxleft, boxesleft )
15. BR Cluster( boxright, boxesright )
16. If boxesleft, boxesright obey tolcombine

17. Append boxesleft, boxesright to boxesout

18. If boxesout = ∅, add bboxtag to boxesout

19. Else set boxesout = ∅

A bounding box for all tagged cells is passed in to the
initial call to the routine; i.e., boxin. The routine outputs a
list of non-overlapping boxes that covers the tags, boxesout.
The routine is called recursively until the fraction of tagged
cells in the given box is greater than some user-prescribed
tolerance (line 5) and the total number of cells in the set of
boxes into which a box is cut is less than some fraction of
cells in the original box (line 16). Figure 6 illustrates how
tag histogram data is used to choose cut points for the box.

The main operation that we are concerned with regarding
parallel performance is the tag data histogram computation
step (line 1). Recall that patches in SAMRAI, and hence tag
data, are distributed across processors. The main parallel
inefficiency in our original BR implementation arose from
the fact that we accumulated tag information into iden-
tical signature arrays on each processor using global MPI
all-reduce operations. Then, identical operations on the his-
togram data were performed on each processor. On small
numbers of processors, the cost of this implementation is ac-
ceptable. However, as problems are scaled up to run on large



Table 1: Breakdown of processor participation for a
5-step Euler sphere computation on 128 processors.
There were a total of 588 calls to the BR algorithm.

Recursion Participating Percent of
Level processors total calls

11 2 1.4
10 4 7.1
9 8 17
8 8 30.6
7 8 46.3
6 8 61.9
5 18 74.5
4 32 84.7
3 80 91.5
2 80 95.6
1 100 98
0 125 100

numbers of processors, algorithm performance degrades con-
siderably for three reasons. First, the amount of histogram
data in each reduction step increases as the length of the ar-
rays grow with the number of cells in the problem. Second,
the number of global reductions increases as we consider
more box regions. Third, the cost of each global reduction
is larger on more processors (theoretically O(P log P ) but is
in practice implementation-dependent).

The BR algorithm starts by requiring knowledge of all
tagged cells which may cover a large portion of the do-
main and involve many patches. However, our analysis re-
vealed that as the recursion level increases, the box sizes
and number of tags evaluated by the algorithm quickly de-
crease. Thus, the number of processors needed to construct
histogram information quickly diminishes. Table 1 shows
how the number of participating processors changes in the
BR algorithm with each recursion level in a sample problem
using 128 processors. The relevant tag data for most calls
resides on a small subset of processors. The routine was
called a total of 588 times and recursion level 5 data reveals
that 74.5% of all calls required 18 or fewer processors.

These findings indicate global reductions are unnecessary
for most histogram construction operation in the BR algo-
rithm. To achieve a more scalable approach, we restruc-
tured the parallel implementation by replacing global re-
ductions with collective communication operations involv-
ing only processors needed to participate. The reformulated
BR implementation uses a binary tree reduction approach
to determine participating processors. A designated root
processor manages the processors that participate and con-
struction of histogram information.

The new implementation is similar to the BR Cluster
routine above with a few changes. The primary difference
occurs at the tag histogram computation in line 1. In the
new implementation, if this processor is not the root pro-
cessor and owns no patch that intersects boxin, the routine
returns. Otherwise, only the participating processors are
used to compute tag histograms for boxin. These histograms
are assembled on the root processor using an all-to-one re-
duction operation. Also, only the root processor performs
the operations involving the location of box cut points and

Figure 7: Wallclock time measurements for the non-
scaled four level spherical shock problem run on
IBM Blue Pacific (data from Table 3).

cutting boxes. In the box cutting step at line 13, the root
processor broadcasts boxleft, boxright to all processors par-
ticipating in the current recursion level. Then, recursive
calls (lines 14, 15) are made on the participating processors
only. Finally, at the end of the recursion, the root processor
broadcasts boxesout to all processors.

We note that we first used MPI communicators for the
all-to-one reductions but later found that hand-coded MPI
send-recvs operations performed slightly better. We postu-
late that this may arise from the need to synchronize all
processors each time an MPI communicator is formed.

6. PERFORMANCE RESULTS
In this section, we we assess performance of the new al-

gorithms on the benchmark problems described in Section 3
on two parallel computer systems. The first is the ASCI
IBM Blue Pacific system constructed of 256 four processor
SMP nodes (244 of which are available for typical batch
runs), each with 1.5GB memory and 332 MHz PowerPC
604e processors. The interconnect network is switch-based,
with an omega topology supporting up to 150Mbytes/s bi-
directional bandwidth between nodes. The second system
is LLNL’s M&IC MCR Linux cluster system with 1152 two
processor nodes, each with 4 GB memory and 2.4 Ghz Intel
processors. Its interconnect is Quadrics QsNet Elan3 with
300 Mbytes/s MPI bandwidth and < 5µs latency.

Both benchmark problems are timed on a range of pro-
cessors, from 32 to 512 on ASCI Blue Pacific and from 32
to 1024 on the MCR Linux system. To eliminate possi-
ble inconsistencies from machine load conditions, each of
the cases was run three times and the times reported are
an average of the three. The overall times are decomposed
into two general phases; time advance and adaptive gridding.
Time advance includes numerical kernel computations on
patches, including costs resulting from load imbalances, as



Figure 8: Number of patches on the finest level on
various processors for the scaled advecting front cal-
culation.

well as communication required to exchange data between
patches. Adaptive gridding includes the cost of performing
the Berger-Rigoutsos clustering to build a new level, con-
structing communication schedules, and distributing data
from the old grid configuration to the new. All other op-
erations are classified as “other”, which includes such oper-
ations as level initialization, load balancing, etc. We show
timings with our original implementation and the new imple-
mentation, which uses the RBBT algorithm in the construc-
tion of communication schedules and the parallel binary tree
implementation of Berger-Rigoutsos clustering.

6.1 Non-scaled Problem Performance
Timing results for the non-scaled four level adaptive Se-

dov spherical shock benchmark, discussed in Section 3.1, are
shown in Tables 2 and 3 for the MCR Linux and ASCI IBM
systems, respectively.

Adaptive gridding operations are clearly much more effi-
cient using the new algorithms. Significant cost savings is
seen in both the communication schedule construction and
the Berger-Rigoutsos clustering phases of adaptive gridding
operations. Communication schedule construction cost is re-
duced by a factor of 2 to 5. On the ASCI IBM system, the
new Berger-Rigoutsos clustering operation is significantly
faster on larger processor partitions. In our original imple-
mentation, this operation constitutes 34% of the total execu-
tion time but the new binary tree implementation requires
only about 3%. On the Linux MCR system, the Berger-
Rigoutsos operation is very fast (4%) in the original imple-
mentation so we see only a slight improvement with the new
implementation. This system has a very fast and efficient
implementation of global reduction operations, so the effi-
ciency enhancements in the new algorithm had less of an
effect on reducing the overall time. Nevertheless, the re-
sults from the IBM system indicate the modified implemen-
tation should be effective on parallel systems where global
reductions are relatively expensive; for example, on cluster
systems with a slow network.

The overall scaling trends for time advance and adaptive
gridding phases using the new algorithms on IBM Blue Pa-
cific are shown in Figure 7. A plot of the data from MCR

shows similar trends. We expect some reduction in parallel
efficiency because the problem size was held constant, hence
the problem size per processor decreases as the processor
count increases. In spite of this, overall parallel scaling is
reasonable for this adaptive problem. The costs we desig-
nate as “other” start to become more significant on larger
numbers of processors. This is predicted by Amdahl’s law,
since non-parallel overhead operations begin to constitute a
larger proportion of the total computational work.

6.2 Scaled Problem Performance
Timing results for the scaled three level adaptive linear

advection benchmark, discussed in Section ??, are shown
in Tables 4 and 5 on the MCR Linux and ASCI IBM sys-
tems, respectively. Unlike the spherical shock calculation
discussed above, for which the same global problem size is
run across all processors, the problem size in this case is
scaled with the number of processors so the number of grid
cells per processor remains roughly constant.

The cost of the time advance portion of the calculation
scales well. Also, the communication costs associated with
refine and coarsen operations and in passing data from an
old to a new hierarchy level both scale reasonably well. Re-
call that the Berger-Rigoutsos operation is not performed
in this case; see Section 3.2. The primary operation that
scales poorly in the original implementation is construc-
tion of communication schedules. Recall that the cost of
constructing communication schedules in our original im-
plementation grows as O(N2) with the number of patches;
see Section 5.1. The number of patches used in the calcula-
tion is roughly proportional to the problem size and hence
grows with the number of processors. Figure 8 shows the
number of patches on the finest level for the various proces-
sor partitions over the course of the adaptive simulation. As
the number of processors is doubled, the number of patches
on the level also roughly doubles. Thus, there is a signif-
icant increase in schedule construction cost in our original
implementation as the problem is scaled to run on larger
numbers of processors. Use of the RBBT algorithm in the
new implementation significantly reduces this cost.

Figure 9 compares the scaling characteristics using our
original implementation to the new implementation. The
new implementation clearly has much better scaling charac-
teristics.

7. CONCLUDING REMARKS
This paper investigates algorithms to enhance the scal-

ing efficiency of adaptive gridding operations in structured
adaptive mesh refinement (SAMR) applications. Although
our evaluation focuses on their implementation in the SAM-
RAI library, the algorithms are applicable to SAMR appli-
cations in general. Earlier tests revealed that adaptive grid-
ding operations can become very expensive on large num-
bers of processors. We introduce a new Recursive Binary
Box Tree (RBBT) algorithm and an alternative parallel im-
plementation of the commonly used Berger-Rigoutsos point
clustering algorithm to improve adaptive gridding efficiency.
We then evaluate the performance of two adaptive bench-
marks, scaled and non-scaled, on two parallel systems, re-
porting a breakdown of the scaling characteristics of the
various parts of the adaptive calculation.

The RBBT is a data structure that enables efficient com-
putation of spatial relationships. We apply it in the con-



Table 2: Timing results on the Linux MCR system of the non-scaled spherical shock problem. The wallclock
time, and percentage of total wallclock time, are shown for the different phases of the calculation.

Processors 32 64 128 256 512 1024

Original Implementation

Time Advance
Computation - num kernels 1647.0 87% 845.3 84% 451.0 80% 260.7 73% 160.1 59% 111.4 49%
Communication overhead 101.0 5% 57.8 6% 36.7 7% 25.0 7% 18.2 7% 12.8 6%
Adaptive Gridding
Schedule construction 72.3 4% 49.1 5% 37.7 7% 34.3 10% 37.0 14% 40.9 18%
Berger Rigoutsos 4.1 1% 4.4 1% 4.8 1% 6.1 2% 9.5 4% 12.7 6%
Data re-distribution 6.4 1% 3.4 1% 1.9 0% 1.1 0% 0.9 0% 0.8 0%
Other 43.1 2% 32.4 3% 31.5 5% 31.7 8% 45.5 16% 50.7 21%
Total 1873.9 992.5 563.6 358.9 271.2 229.3

New Implementation

Time Advance
Computation - num kernels 1603.6 90% 848.1 89% 455.3 84% 260.8 78% 159.0 66% 111.0 56%
Communication overhead 98.8 5% 58.5 6% 36.7 7% 25.3 8% 18.6 8% 13.2 7%
Adaptive Gridding
Schedule construction 13.2 1% 10.5 1% 10.3 2% 10.5 3% 13.7 6% 17.1 8%
Berger Rigoutsos 3.0 1% 3.2 1% 3.5 1% 5.6 2% 9.0 4% 11.8 6%
Data re-distribution 6.3 1% 2.4 1% 1.9 1% 1.1 0% 0.8 0% 0.8 0%
Other 42.3 2% 32.9 2% 31.6 5% 32.3 9% 44.6 16% 49.7 23%
Total 1767.0 955.6 539.3 335.7 245.5 203.5

Table 3: Timing results on the IBM Blue Pacific system of the non-scaled spherical shock problem.
Processors 32 64 128 256 512

Original Implementation

Time Advance
Computation - num kernels 8391.5 81% 4369.3 77% 2448.1 68% 1345.8 57% 861.4 29%
Communication overhead 635.4 6% 364.2 6% 236.5 7% 153.2 6% 117.8 4%
Adaptive Gridding
Schedule construction 945.3 9% 607.3 11% 454.3 13% 375.0 16% 408.3 13%
Berger Rigoutsos 54.7 1% 83.0 2% 104.2 3% 254.3 11% 1025.2 34%
Data re-distribution 47.5 1% 26.8 1% 16.8 1% 11.5 1% 9.5 1%
Other 265.5 2% 216.6 3% 341.0 8% 236.0 9% 592.8 19%
Total 10339.9 5667.2 3600.9 2375.8 3015.1

New Implementation

Time Advance
Computation - num kernels 8363.9 89% 4360.2 86% 2343.0 80% 1473.4 71% 895.1 54%
Communication overhead 622.0 6% 360.1 7% 226.8 8% 153.5 7% 117.5 7%
Adaptive Gridding
Schedule construction 119.1 1% 92.4 2% 100.7 3% 130.8 6% 213.5 13%
Berger Rigoutsos 18.7 1% 28.2 1% 23.4 1% 39.6 2% 53.8 3%
Data re-distribution 43.8 1% 24.7 1% 13.6 1% 7.7 1% 5.5 1%
Other 262.4 2% 222.5 3% 233.2 7% 262.9 13% 374.9 22%
Total 9429.9 5088.1 2940.8 2067.9 1660.4



Table 4: Timing results on the Linux MCR system of the scaled advecting front problem. The wallclock
time, and percentage of total wallclock time, are shown for the different phases of the calculation.

Processors 32 64 128 256 512 1024

Original Implementation

Time Advance
Computation - num kernels 315.9 79% 314.2 76% 317.6 63% 362.9 45% 357.3 21% 379.0 8%
Communication overhead 35.4 9% 34.8 9% 35.2 7% 40.4 5% 44.6 3% 100.9 2%
Adaptive Gridding
Schedule construction 30.5 8% 43.3 11% 130.0 26% 380.6 47% 1277.3 75% 4054.3 87%
Data re-distribution 2.7 1% 2.8 1% 3.2 1% 3.6 1% 4.1 1% 5.2 1%
Other 16.0 3% 16.0 3% 20.0 3% 22.8 2% 32.1 1 107.5 2%
Total 400.5 411.2 506.0 810.2 1715.4 4647.0

New Implementation

Time Advance
Computation - num kernels 323.1 84% 329.8 83% 321.9 78% 330.1 77% 334.7 69% 350.1 51%
Communication overhead 35.6 9% 35.3 9% 36.4 9% 39.3 9% 44.5 9% 75.1 11%
Adaptive Gridding
Schedule construction 6.6 2% 10.9 3% 17.6 4% 31.2 7% 68.1 14% 159.2 23%
Data re-distribution 2.7 1% 2.8 1% 3.1 1% 3.4 1% 3.7 1% 4.0 1%
Other 17.0 4% 19.0 4% 32.3 7% 22.4 6% 33.3 7% 92.5 14%
Total 385.0 397.7 411.4 426.3 484.3 680.9

Table 5: Timing results on the IBM Blue Pacific system of the scaled advecting front problem.
Processors 32 64 128 256 512

Original Implementation

Time Advance
Computation - num kernels 1182.7 64% 1309.7 56% 1323.5 42% 2144.8 33% 1739.3 12%
Communication overhead 186.8 10% 242.1 10% 227.9 7% 311.8 5% 382.8 3%
Adaptive Gridding
Schedule construction 384.8 21% 715.0 31% 1467.2 47% 3918.2 60% 11969.6 83%
Data re-distribution 18.1 1% 21.7 1% 25.9 1% 41.7 1% 50.4 1%
Other 66.8 4% 47.6 2% 92.8 3% 115.6 1% 178.8 1%
Total 1839.1 2336.1 3137.4 6532.1 14321.0

New Implementation

Time Advance
Computation - num kernels 1267.3 80% 1287.7 78% 1324.8 74% 2119.3 75% 1572.6 58%
Communication overhead 181.8 12% 192.9 12% 211.7 12% 272.4 10% 333.2 12%
Adaptive Gridding
Schedule construction 45.3 3% 81.4 5% 149.7 8% 149.7 5% 621.6 23%
Data re-distribution 15.7 1% 17.0 1% 19.5 1% 23.9 1% 17.4 1%
Other 69.3 4% 79.0 4% 93.6 5% 270.5 9% 180.6 6%
Total 1579.3 1658.0 1799.4 2835.7 2725.4



Figure 9: Comparison of scaling qualities of the scaled advecting front problem of our original to our current
implementation using the RBBT algorithm (data from Table 4).

struction of communication schedules, which describe the
data dependencies between patches. The schedules must be
reconstructed each time the adaptive grid changes. The al-
gorithm we originally used in constructing communication
schedules was O(N2) in complexity, where N is the number
of patches on the level. Using the RBBT algorithm, we are
able to reduce the complexity to O(N log N). This leads to
significant reductions in cost for calculations scaled to 1024
processors.

On one of the systems tested, ASCI IBM Blue Pacific,
our original implementation of the Berger-Rigoutsos point
clustering algorithm became very costly on large processor
configurations. This was due to the use of global reduc-
tions in the implementation, which become more expensive
as the number of processors increases. We developed an al-
ternative parallel implementation that uses localized sends
and receives in place of global reductions and saw significant
savings on this system. Improvements were less significant
on a high-performance Linux cluster system but we attribute
this to the fact that the system has very efficient global re-
duction operations so our modified approach has less of an
effect. We speculate this new implementation will primarily
be useful on systems where global reductions are expensive,
relative to other communication operations (e.g. commodity
cluster systems with slow interconnect).

The scaling studies we perform in this paper with adaptive
problems run on up to 1024 processors reveal that the core
numerical operations and communication scale well to larger
numbers of processors. Although we were able to make sig-
nificant progress in reducing adaptive gridding costs through
the use of more efficient algorithms, further enhancements
will be necessary as we push to systems that use even larger
numbers of processors.
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